ExaSAT XML Specification
Draft Version 0.3.1

Cy Chan
ExaCT Co-design Center
Lawrence Berkeley National Laboratory

April 24, 2013

This document details the XML file structure used by the ExaSAT (Exascale Static Analysis Tool). In
typical usage (see Figure 1), the compiler analysis component reads a source code input to generate an XML
file, which is then fed into the performance model component to estimate imporatant performance statistics
(e.g. flops, memory traffic, working set, runtime). However, if one wants to estimate the performance of a
hypothetical code formulation without writing the actual code, an XML representation of that code can be
used in conjunction with the performance model component.

Performance Prediction
Spreadsheet

Machine
Parameters

i

Compiler
Analysis

Combustion
Codes

Performance Dependency
Model Graph Optimization

41\0

<XML>
User
Parameters

Figure 1: ExaSAT Tool Chain

0.1 XML Description

The XML contains a root program element, of which every other element in the file is a descendant.

This section details the attributes and sub-elements found in each element type. An element must have
exactly one of each attribute listed for its element type (unless the attribute is designated optional) and may
have zero or more sub-elements of each of the types listed for its element type. The elements are presented
in the order of a depth-first traversal of the XML hierarchy as shown in Figure 2.

0.1.1 The program element
e Attributes: NONE

e Sub-Elements:



program

function
loop comm functioncall nonlocal local
scalar array pininfo commarray commscalar

 J

access

Figure 2: XML Element Hierarchy

— function - a function that appears in the program

0.1.2 The function element
e Attributes:
— name - the name of the function
e Sub-Elements:

— local - a local (stack) variable that appears in the function

— nonlocal - a non-local (e.g. global or argument) variable that appears in the function
— loop - a loop that is executed within the function

— comm - a communication that occurs within the function

— functioncall - a function call that is made within the function

0.1.3 The local element
e Attributes:

— name - the name of the local variable

e Sub-Elements: NONE

0.1.4 The nonlocal element
e Attributes:
— name - the name of the non-local variable

e Sub-Elements: NONE



0.1.5 The loop element

This element is used to help estimate the work needed to execute the loop including floating point com-
putation and memory traffic. Elements and attributes associated with a loop pertain to code within that
particular loop level but not to code further nested in child loops.

e Attributes:

linenum - the line number where the loop begins
loopvar - the loop iteration variable

stride - the strides used in the loop
lowerbound - lower bound of loop

upperbound - upper bound of loop

adds - the number of floating point additions and subtractions in the loop (exclusive of nested
child loops)

multiplies - the number of floating point multiplications in the loop (exclusive of nested child
loops)

divides - the number of floating point divisions in the loop (exclusive of nested child loops)

specials - the number of special floating point operations (e.g. sqrt) in the loop (exclusive of
nested child loops)

e Sub-Elements:

loop - a loop nested within this loop

scalar - a scalar integer or floating point variable that is used in the body of the loop (exclusive
of nested child loops)

array - an integer or floating point array that is used in the body of the loop (exclusive of nested
child loops)

pininfo - a special auxiliary element that is used to report performance counter measurements
collected during an instrumented trial run

0.1.6 The scalar element

This element is used to help estimate the number of registers required to hold state in the loop body without
spilling into the L1 cache. It can be used to specify stack variables, global parameters, and subroutine
arguments.

e Attributes:

name - the name of the scalar variale
datatype - the type (e.g. int or double) of the variable

isConstant - true if the variable is a constant (e.g. a global or module “parameter” in Fortran),
or false otherwise

reads - number of reads from the variable during the loop (exclusive of nested child loops)

writes - number of writes to the variable during the loop (exclusive of nested child loops)

e Sub-Elements: NONE



0.1.7 The array element

This element is used to help estimate the amount of memory traffic required to stream data in and out of
memory.

e Attributes:

— name - the name of the array

— component - the component of the array (can leave blank)

— datatype - the type (e.g. int or double) of the array

— accesstype - readonly, writeonly, readwrite - describes the array access type

— ghost - the extent of the ghost/halo region accessed past the index boundaries, given in the
form ((gnego, gposo), (gnegs, gposi), ...). If the index space is ((ming, mazy), (mini, mazxy),...),
then the total access space (iteration space plus halos) is ((ming + gnego, maxo + gposo), (miny +
gnegi, maxy + gposi ), ...). Note that by this definition, gneg values are typically negative.

e Sub-Elements:

— access - an array access that appears in the loop body (exclusive of nested child loops)

0.1.8 The access element

This element is used to describe an array location that is accessed in the loop. For relative accesses, the
index of an access A(ig + co, 41 + C1, ..., i + ¢k ) is given as a tuple of offsets (¢, c1, ..., ;) relative to the loop
indices (49, @1, -.., ix), where k is the nesting depth of the loop body, iy refers to the innermost loop variable,
and iy refers to the outermost loop variable. If the loop variables do not appear in the default (innermost
to outermost) order for that array access, the optional indexorder attribute is used to specify the order in
which the loop variables appear.

TODO: Handle mixed relative and absolute indices.

e Attributes:

— index - the index of the access expressed as a tuple of offsets relative to the loop indices

isRelative - true if the index is given relative to the loop indices (e.g. index = (0, 1) represents
A(ig,i1 + 1)), or false if the index is fixed (e.g. index = (0,1) represents A(0,1))

— indexorder (optional) - a tuple that specifies the order in which the loop variables appear in
the array access tuple. For example, if indexorder is (0,2,1), then index = (1,2, 3) represents
A(ig + 1,49 + 2,41 + 3). Defaults to (0,1, ..., k).

— reads - number of reads from the array index during the loop (exclusive of nested child loops)

— writes - number of writes to the array index during the loop (exclusive of nested child loops)

e Sub-Elements: NONE

0.1.9 The pininfo element

This special auxiliary element is used to report counters (measured by the PINTool dynamic analysis tool),
which are collected on a per-loop basis during a trial run. This element differs from most other elements
in the XML in that it is not used to help describe the static structure of the program, but rather to report
the code’s observed behavior during execution. This information is not currently used during performance
prediction in the ExaSAT performance model.

e Attributes:



— entries - number of entries into the loop

— iters - number of iterations of the loop

— ops - total number of all types of operations performed
— reads - number of read operations

— writes - number of write operations

— bytereads - number of bytes read

— bytewrites - number of bytes written

— uniquereads - number of unique memory addresses read
— uniquewrites - number of unique memory addresses written
— adds - number of additions

— subs - number of subtractions

— muls - number of multiplications

— divs - number of divisions

— cachehits - number of cache hits

— cachemisses - number of cache misses

e Sub-Elements: NONE

0.1.10 The comm element
This element is used to describe communications that occur within the function.
e Attributes:

— linenum - the line number where the comm begins

— commtype - the type of communication requested (e.g. reduce for a reduction or ghost for a ghost
halo exchange)

— interface - the name of the library function called
e Sub-Elements:

— commscalar - an integer or floating point variable that is communicated

— commarray - an integer or floating point array that is communicated

0.1.11 The commscalar element
Currently only used for commtype="reduce".
e Attributes:

— name - the name of the variable

— datatype - the type (e.g. int or double) of the variable

e Sub-Elements: NONE



0.1.12 The commarray element
Currently only used for commtype="ghost".
o Attributes:

— name - the name of the array
— datatype - the type (e.g. int or double) of the array
— numofcomponents - the number of array components included in the communication

— ghost - the extent of the ghost halo region to be communicated. Uses the same format as the
ghost attribute for the array subelement of the loop element (see Section 0.1.7).

e Sub-Elements: NONE

0.1.13 The functioncall element
e Attributes:

— linenum - the line number where the function call occurs

— name - the name of the function call

e Sub-Elements: NONE

0.2 Changelog
0.2.1 Changes in Draft Version 0.3.1
e added loopvar attribute to loop element

e made reads and writes attributes mandatory for scalar and access elements

0.2.2 Changes in Draft Version 0.3

e loop elements no longer represent entire loop nests and are hierarchically nested to represent each loop
statement individually. Changed stride, removed range, and added lowerbound and upperbound to
reflect update. Operation counts and scalar and array accesses reflect code in the current loop level
only, not nested child loops.

o separated divides from multiplies attribute in loop element

e removed componentsweep attribute from loop element

e changed type attribute to datatype in elements scalar, array, commscalar, and commarray
e changed indextype attribute to isRelative

e added cachemisses attribute to pininfo element

0.2.3 Changes in Draft Version 0.2

e removed var elements, moved children (local, nonlocal, scalar, array) up one level to function
or loop.

e removed flops element, moved children (add, multiply, special) up one level to loop and changed
them to attributes

e changed loop range from element to attribute



added type attribute to array element

renamed access element’s value attribute to index

renamed access element’s type attribute to indextype

added optional reads and writes attributes to scalar and access elements
moved commtype attribute into comm element

renamed comm element’s array sub-element to commarray for uniqueness

added commscalar sub-element to comm element (for use with commtype="reduce")

added pininfo sub-element to loop element



